* 다음에 약간의 삽질을 줄일까 싶어 그냥 기록으로 남김

* 환경은 Visual Studio 2022

 

1. C# 프로젝트 만들기

2. C++ dll 프로젝트 만들기

3. C# 프로그램에서 dll 함수 호출

 

1. C#프로젝트 만들기

 

 

2. C++ dll 만들기

(1) 프로젝트 생성

(2) pch.cpp 파일에 다음과 같이 추가한다.

extern "C" __declspec(dllexport) int AddFunc(int index1, int index2) {
	return index1 + index2;
}

(3) dll 프로젝트의 속성 > 빌드 후 이벤트에 다음과 같이 입력한다

 

copy $(OutDir)$(TargetFileName) $(SolutionDir)ConsoleApp_CppDllCall\bin\Debug\$(TargetFileName)

 

(4) dll 프로젝트를 빌드하면 C# 출력 폴더로 복사한다

 

3. C#프로그램에서 C++ dll 호출

(1) C# 프로젝트의 속성에서 64비트로 구동하게 해줘야 한다.(다른 방법도 있지만 귀찮아서 생략)

 

(2) 다음과 같이 호출하는 코드 작성

internal class Program
{
    [System.Runtime.InteropServices.DllImport("CppDll.dll")]
    public static extern int AddFunc(int index1, int index2);


    static void Main(string[] args)
    {
        Console.WriteLine("Add Result : " + AddFunc(1, 2));
    }
}

1. Console 프로젝트를 만든다

2. Nuget 프로젝트에서 OnnxRuntime을 다운받는다

3. OpencvSharp관련 프로젝트도 다운 받는다

4. https://github.com/singetta/OnnxSample/tree/main/OnnxSample/Yolov5 경로의 3개의 cs파일을 다운 받아 프로젝트에 포함시킨다

5. 프로젝트 빌드 속성을 다음과 같이 수정

6. YoloDetector.cs 파일의 생성자 부분을 다음과 같이 바꾼다

public YoloDetector(string model_path)
        {
#region 추가
            OrtCUDAProviderOptions ortCUDAProviderOptions = new OrtCUDAProviderOptions();
            var providerOptionsDict = new Dictionary<string, string>();
            providerOptionsDict["cudnn_conv_use_max_workspace"] = "1";
            ortCUDAProviderOptions.UpdateOptions(providerOptionsDict);

            var option = SessionOptions.MakeSessionOptionWithCudaProvider(ortCUDAProviderOptions);
            option.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_VERBOSE;
#endregion

            #region 주석처리
            /*
            var option = new SessionOptions();
            option.GraphOptimizationLevel = GraphOptimizationLevel.ORT_ENABLE_ALL;
            option.ExecutionMode = ExecutionMode.ORT_SEQUENTIAL;            
            */
            #endregion
            sess = new InferenceSession(model_path, option);

            imageFloat = new Mat();
            debugImage = new Mat();
            MinConfidence = 0.2f;
            NmsThresh = 0.4f;
        }

7. Inference 프로그램은 다음과 같다(Program.cs)

using OnnxSample.Yolov5;
using OpenCvSharp;
using System;

namespace OnnxSegmInference
{
    internal class Program
    {
        static void Main(string[] args)
        {
            var dataSizeY = 384;
            var dataSizeX = 480;

            var detector = new YoloDetector("segmbin_best_mode.onnx")
            {
                imgSize = new Size(dataSizeX, dataSizeY),
                MinConfidence = 0.5f
            };

            using (var image = Cv2.ImRead("0001TP_008550.png"))
            {
                var inspImage = image.Resize(new Size(dataSizeX, dataSizeY));
                DateTime dtBeg = DateTime.Now;
                var result = detector.objectSegmentation(inspImage);


                Cv2.NamedWindow("SOURCE", WindowFlags.Normal);
                Cv2.ImShow("SOURCE", inspImage);

                for (int i=0; i<result.Count; i++)
                {
                    using (var dispImage1 = new Mat(new Size(dataSizeX, dataSizeY), MatType.CV_8UC3))
                    {
                        Cv2.CvtColor(result[0], dispImage1, ColorConversionCodes.GRAY2BGR);

                        Cv2.NamedWindow("RESULT" + (i+1).ToString(), WindowFlags.Normal);
                        Cv2.ImShow("RESULT" + (i + 1).ToString(), dispImage1);
                    }
                }
                Cv2.WaitKey();
            }
        }
    }
}

8. onnx파일과 데이터 이미지 파일을 같은 폴더에 두고 실행을 하면 다음의 결과를 볼 수 있다

 

binary segmentation export : binary_segm_onnx_export.py

 

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
import cv2
import matplotlib.pyplot as plt
import albumentations as albu
import segmentation_models_pytorch as smp

ENCODER = 'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = ['car']
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
DEVICE = 'cuda'

model = smp.FPN(
    encoder_name=ENCODER, 
    encoder_weights=ENCODER_WEIGHTS, 
    classes=len(CLASSES), 
    activation=ACTIVATION,
)

#model.load_state_dict(torch.load('./best_model_state_dict.pth'))
m = torch.load('./best_model_state_dict.pth')
model.load_state_dict(m)


batch_size = 1
#img = torch.randn(batch_size, 3, 896, 1280, requires_grad=True)
img = torch.randn(batch_size, 3, 384, 480, requires_grad=True)


torch.onnx.export(model, img, 
                 "./segmbin_best_mode.onnx", 
                  verbose=False,
                  opset_version=12,
                  input_names=['images'],
                  output_names=['output'],
                  do_constant_folding=True
                  #if device == 'cpu' else False
                  ,
                  dynamic_axes={'images': {0: 'batch_size'},
                                'output': {0: 'batch_size'}}
                 )

* example폴더에 보면 binary_segmentation_intro.ipynb 파일이 있는데, 따라함

pip install imgaug

 

* 예제를 다음과 같이 작성함(binary_segmentation.py)

python binary_segmentation.py
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import numpy as np
import cv2
import matplotlib.pyplot as plt

DATA_DIR = './data/CamVid/'

# load repo with data if it is not exists
if not os.path.exists(DATA_DIR):
    print('Loading data...')
    os.system('git clone https://github.com/alexgkendall/SegNet-Tutorial ./data')
    print('Done!')

x_train_dir = os.path.join(DATA_DIR, 'train')
y_train_dir = os.path.join(DATA_DIR, 'trainannot')

x_valid_dir = os.path.join(DATA_DIR, 'val')
y_valid_dir = os.path.join(DATA_DIR, 'valannot')

x_test_dir = os.path.join(DATA_DIR, 'test')
y_test_dir = os.path.join(DATA_DIR, 'testannot')


# helper function for data visualization
def visualize(**images):
    """PLot images in one row."""
    n = len(images)
    plt.figure(figsize=(16, 5))
    for i, (name, image) in enumerate(images.items()):
        plt.subplot(1, n, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.title(' '.join(name.split('_')).title())
        plt.imshow(image)
    plt.show()
    

from torch.utils.data import DataLoader
from torch.utils.data import Dataset as BaseDataset

class Dataset(BaseDataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    
    """
    
    CLASSES = ['sky', 'building', 'pole', 'road', 'pavement', 
               'tree', 'signsymbol', 'fence', 'car', 
               'pedestrian', 'bicyclist', 'unlabelled']
    
    def __init__(
            self, 
            images_dir, 
            masks_dir, 
            classes=None, 
            augmentation=None, 
            preprocessing=None,
    ):
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
        
        # convert str names to class values on masks
        self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]
        
        self.augmentation = augmentation
        self.preprocessing = preprocessing
    
    def __getitem__(self, i):
        
        # read data
        image = cv2.imread(self.images_fps[i])
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        mask = cv2.imread(self.masks_fps[i], 0)
        
        # extract certain classes from mask (e.g. cars)
        masks = [(mask == v) for v in self.class_values]
        mask = np.stack(masks, axis=-1).astype('float')
        
        # apply augmentations
        if self.augmentation:
            sample = self.augmentation(image=image, mask=mask)
            image, mask = sample['image'], sample['mask']
        
        # apply preprocessing
        if self.preprocessing:
            sample = self.preprocessing(image=image, mask=mask)
            image, mask = sample['image'], sample['mask']
            
        return image, mask
        
    def __len__(self):
        return len(self.ids)

dataset = Dataset(x_train_dir, y_train_dir, classes=['car'])

image, mask = dataset[4] # get some sample
visualize(
    image=image, 
    cars_mask=mask.squeeze(),
)

import albumentations as albu

def get_training_augmentation():
    train_transform = [

        albu.HorizontalFlip(p=0.5),

        albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0),

        albu.PadIfNeeded(min_height=320, min_width=320, always_apply=True, border_mode=0),
        albu.RandomCrop(height=320, width=320, always_apply=True),

        albu.IAAAdditiveGaussianNoise(p=0.2),
        albu.IAAPerspective(p=0.5),

        albu.OneOf(
            [
                albu.CLAHE(p=1),
                albu.RandomBrightness(p=1),
                albu.RandomGamma(p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                albu.IAASharpen(p=1),
                albu.Blur(blur_limit=3, p=1),
                albu.MotionBlur(blur_limit=3, p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                albu.RandomContrast(p=1),
                albu.HueSaturationValue(p=1),
            ],
            p=0.9,
        ),
    ]
    return albu.Compose(train_transform)


def get_validation_augmentation():
    """Add paddings to make image shape divisible by 32"""
    test_transform = [
        albu.PadIfNeeded(384, 480)
    ]
    return albu.Compose(test_transform)


def to_tensor(x, **kwargs):
    return x.transpose(2, 0, 1).astype('float32')


def get_preprocessing(preprocessing_fn):
    """Construct preprocessing transform
    
    Args:
        preprocessing_fn (callbale): data normalization function 
            (can be specific for each pretrained neural network)
    Return:
        transform: albumentations.Compose
    
    """
    
    _transform = [
        albu.Lambda(image=preprocessing_fn),
        albu.Lambda(image=to_tensor, mask=to_tensor),
    ]
    return albu.Compose(_transform)








if __name__ == '__main__':
    #### Visualize resulted augmented images and masks

    augmented_dataset = Dataset(
        x_train_dir, 
        y_train_dir, 
        augmentation=get_training_augmentation(), 
        classes=['car'],
    )

    # same image with different random transforms
    for i in range(3):
        image, mask = augmented_dataset[1]
        visualize(image=image, mask=mask.squeeze(-1))

    ## Create model and train
    import torch
    import numpy as np
    import segmentation_models_pytorch as smp

    ENCODER = 'se_resnext50_32x4d'
    ENCODER_WEIGHTS = 'imagenet'
    CLASSES = ['car']
    ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
    DEVICE = 'cuda'

    # create segmentation model with pretrained encoder
    model = smp.FPN(
        encoder_name=ENCODER, 
        encoder_weights=ENCODER_WEIGHTS, 
        classes=len(CLASSES), 
        activation=ACTIVATION,
    )

    preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)

    train_dataset = Dataset(
        x_train_dir, 
        y_train_dir, 
        augmentation=get_training_augmentation(), 
        preprocessing=get_preprocessing(preprocessing_fn),
        classes=CLASSES,
    )

    valid_dataset = Dataset(
        x_valid_dir, 
        y_valid_dir, 
        augmentation=get_validation_augmentation(), 
        preprocessing=get_preprocessing(preprocessing_fn),
        classes=CLASSES,
    )

    #train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=12)
    #valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=4)
    train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0)
    valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=0)

    # Dice/F1 score - https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
    # IoU/Jaccard score - https://en.wikipedia.org/wiki/Jaccard_index


    import segmentation_models_pytorch.utils

    loss = smp.utils.losses.DiceLoss()
    metrics = [
        smp.utils.metrics.IoU(threshold=0.5),
    ]

    optimizer = torch.optim.Adam([ 
        dict(params=model.parameters(), lr=0.0001),
    ])


    # create epoch runners 
    # it is a simple loop of iterating over dataloader`s samples
    train_epoch = smp.utils.train.TrainEpoch(
        model, 
        loss=loss, 
        metrics=metrics, 
        optimizer=optimizer,
        device=DEVICE,
        verbose=True,
    )

    valid_epoch = smp.utils.train.ValidEpoch(
        model, 
        loss=loss, 
        metrics=metrics, 
        device=DEVICE,
        verbose=True,
    )


    # train model for 40 epochs

    max_score = 0

    for i in range(0, 40):
        
        print('\nEpoch: {}'.format(i))
        train_logs = train_epoch.run(train_loader)
        valid_logs = valid_epoch.run(valid_loader)
        
        # do something (save model, change lr, etc.)
        if max_score < valid_logs['iou_score']:
            max_score = valid_logs['iou_score']
            torch.save(model, './best_model.pth')
            torch.save(model.state_dict(),'./best_model_state_dict.pth')
            
            print('Model saved!')
            
        if i == 25:
            optimizer.param_groups[0]['lr'] = 1e-5
            print('Decrease decoder learning rate to 1e-5!')

    # load best saved checkpoint
    best_model = torch.load('./best_model.pth')

    # create test dataset
    test_dataset = Dataset(
        x_test_dir, 
        y_test_dir, 
        augmentation=get_validation_augmentation(), 
        preprocessing=get_preprocessing(preprocessing_fn),
        classes=CLASSES,
    )

    test_dataloader = DataLoader(test_dataset)

    # evaluate model on test set
    test_epoch = smp.utils.train.ValidEpoch(
        model=best_model,
        loss=loss,
        metrics=metrics,
        device=DEVICE,
    )

    logs = test_epoch.run(test_dataloader)

    # test dataset without transformations for image visualization
    test_dataset_vis = Dataset(
        x_test_dir, y_test_dir, 
        classes=CLASSES,
    )

    for i in range(5):
        n = np.random.choice(len(test_dataset))
        
        image_vis = test_dataset_vis[n][0].astype('uint8')
        image, gt_mask = test_dataset[n]
        
        gt_mask = gt_mask.squeeze()
        
        x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0)
        pr_mask = best_model.predict(x_tensor)
        pr_mask = (pr_mask.squeeze().cpu().numpy().round())
            
        visualize(
            image=image_vis, 
            ground_truth_mask=gt_mask, 
            predicted_mask=pr_mask
        )

 

참조사이트 : https://blog.hbsmith.io/c-%EA%B8%B0%EB%B0%98-semantic-segmentation-%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%A8-%EA%B0%9C%EB%B0%9C-d330a98a005b

 

* CUDA & CUDNN 환경

* CUDA : 11.3
* CUDNN : 8.2.1

1. 다음의 명령어로 가상환경을 만든다

conda create -n segmentation python=3.9
conda activate segmentation

2. github로부터 다운 받는다

git clone https://github.com/qubvel/segmentation_models.pytorch

3. 생성된 폴더로 이동한 뒤 필요한 녀석들을 설치한다.

cd segmentation_models.pytorch
pip install -r requirements.txt

4. GPU 버전을 설치하기 위해 다음의 항목들을 지우고 다시 설치한다.

(https://pytorch.org/ 참조)

pip uninstall torch
pip uninstall torchvision

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

5. 추가로 필요한 기능들을 설치한다

pip install matplotlib
pip install pytorch-lightning

6. Command Line 상에서 다음과 같이 가상환경 위치를 찾아낸다.

7. 가상환경의 경로에  path.pth 라는 텍스트 파일을 만든 뒤 github로부터 다운받은 루트폴더 경로를 저장한다

* 파일명 : d:\Anaconda3\envs\segmentation\path.pth
* 내용 --------------------------------------------------
D:\DeepLearning\Repository\segmentation_models.pytorch
---------------------------------------------------------

 

 

 

 

 

 

 

 

 

 

참조 : https://youtu.be/MwftpaA4dNM?list=PL_fV1knZRgi7Uu6GDZi5SzNvjRiXT4Ivd

 

* 프로그램 종료시 입력/수정된 데이터를 격리된저장소(Isolated Storage)에 저장

* 프로그램 재시작시 종료전 데이터를 다시 로드함

 

<Window x:Class="AboutIsolatedStorage.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:AboutIsolatedStorage"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="400"
        Closed="Window_Closed"
        Initialized="Window_Initialized">
    <StackPanel>
        <TextBlock>추가할 친구</TextBlock>
        <TextBox x:Name="txtNewFrd"></TextBox>
        <Button Click="Button_Click">추가</Button>
        <ListBox x:Name="listFrd"></ListBox>
    </StackPanel>
</Window>
using System;
using System.Collections.Generic;
using System.IO;
using System.IO.IsolatedStorage;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace AboutIsolatedStorage
{
    /// <summary>
    /// MainWindow.xaml에 대한 상호 작용 논리
    /// </summary>
    public partial class MainWindow : Window
    {
        public MainWindow()
        {
            InitializeComponent();
        }

        private void Button_Click(object sender, RoutedEventArgs e)
        {
            if(txtNewFrd.Text != String.Empty)
            {
                AddFriend(txtNewFrd.Text);
                txtNewFrd.Text = string.Empty;
            }
        }

        private void AddFriend(string text)
        {
            ListViewItem lvl = new ListViewItem();
            lvl.Content = text;
            listFrd.Items.Add(lvl);
        }

        private void Window_Closed(object sender, EventArgs e)
        {
            IsolatedStorageFile isofile = IsolatedStorageFile.GetUserStoreForAssembly();

            using(IsolatedStorageFileStream stream = new IsolatedStorageFileStream("listfrd", System.IO.FileMode.Create, isofile))
            {
                using(StreamWriter sw = new StreamWriter(stream))
                {
                    foreach(ListViewItem lvl in listFrd.Items)
                    {
                        sw.WriteLine(lvl.Content);
                    }
                }

            }
        }

        private void Window_Initialized(object sender, EventArgs e)
        {
            IsolatedStorageFile isofile = IsolatedStorageFile.GetUserStoreForAssembly();

            using (IsolatedStorageFileStream stream = new IsolatedStorageFileStream("listfrd", System.IO.FileMode.OpenOrCreate, isofile))
            {
                using (StreamReader sr = new StreamReader(stream))
                {
                    while (!sr.EndOfStream)
                    {
                        AddFriend(sr.ReadLine());
                    }
                }

            }
        }
    }
}

 

 

 

 

 

 

 

 

 

**참조 사이트 : https://youtu.be/eOTCR4yK3Aw?list=PL_fV1knZRgi7Uu6GDZi5SzNvjRiXT4Ivd

 

 

 

1. 초기화면

2. 마우스를 버튼에 올리면 버튼 색상 바뀜

3. 버튼을 누르면 버튼 바로 위의 텍스트 스타일이 바뀜

 

* Type 1 : 태그에 직접 스타일 기술

* Type 2 : 하위 요소의 Style 이용

* Type 3 : 리소스의 Style 이용

* Type 4 : 리소스의 재정의 Style 이용

* Type 5 : 스타일의 동적 변경

* Type 6 : 본문의 특정 컨트롤의 Style을 일괄적으로 적용

<Window x:Class="AboutWpfStyle.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:AboutWpfStyle"
        mc:Ignorable="d"
        Title="MainWindow" Height="250" Width="400">
    <Window.Resources>
        <Style x:Key="MyTextStyle">
            <Setter Property="TextBlock.Background" Value="Black"/>
            <Setter Property="TextBlock.Foreground" Value="White"/>
            <Setter Property="TextBlock.HorizontalAlignment" Value="Center"/>
        </Style>
        <!-- Style 재정의 -->
        <Style x:Key="MyTextStyle2" BasedOn="{StaticResource MyTextStyle}">
            <Setter Property="TextBlock.Foreground" Value="Red"/>
        </Style>

        <!-- Type 6 : 본문의 특정 컨트롤의 Style을 일괄적으로 적용-->
        <Style TargetType="Button">
            <Setter Property="Background" Value="Blue"/>
            <Style.Triggers>
                <Trigger Property="IsMouseOver" Value="true">
                    <Setter Property="Background" Value="Red"/>
                </Trigger>
            </Style.Triggers>
        </Style>
    </Window.Resources>
    <StackPanel>
        <!-- Type 1 : 태그에 직접 스타일 기술 -->
        <TextBlock Background="Black" Foreground="White" HorizontalAlignment="Center">직접명시</TextBlock>

        <!-- Type 2 : 하위 요소의 Style 이용 -->
        <TextBlock>
            <TextBlock.Style>
                <Style>
                    <Setter Property="TextBlock.Background" Value="Black"/>
                    <Setter Property="TextBlock.Foreground" Value="White"/>
                    <Setter Property="TextBlock.HorizontalAlignment" Value="Center"/>

                </Style>
            </TextBlock.Style>
            서브요소 Style 이용
        </TextBlock>

        <!-- Type 3 : 리소스의 Style 이용 -->
        <TextBlock Style="{StaticResource MyTextStyle}">리소스 Style 이용</TextBlock>
        <!-- Type 4 : 리소스의 재정의 Style 이용 -->
        <TextBlock Style="{StaticResource MyTextStyle2}">리소스 Style 재정의 이용</TextBlock>
        <!-- Type 5 : 스타일의 동적 변경 -->
        <TextBlock x:Name="DemoText">버튼을 누르면 스타일이 변경됨</TextBlock>
        <Button Click="Button_Click">확인</Button>
    </StackPanel>
</Window>
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace AboutWpfStyle
{
    /// <summary>
    /// MainWindow.xaml에 대한 상호 작용 논리
    /// </summary>
    public partial class MainWindow : Window
    {
        public MainWindow()
        {
            InitializeComponent();
        }

        private void Button_Click(object sender, RoutedEventArgs e)
        {
            if(DemoText.Style == null)
            {
                DemoText.Style = Resources["MyTextStyle2"] as Style;
            }
            else
            {
                DemoText.Style = null;
            }
        }
    }
}

 

 

 

 

강의 영상 : https://youtu.be/Orwyaq51MXQ?list=PLxU-iZCqT52Cmj47aKB1T-SxI33YL7rYS

 

아직까지는 이렇게 쓸 일이 있겠나 싶음

 

Command 패턴을 이용한 영상까지 봐야 할듯

 

* 데이터 바인딩 의도 : 데이터와 컨트롤을 연결(Binding)시켜놓고 데이터를 시키면 연결된 컨트롤이 알아서 변하도록 함

 

1. 모델 클래스(User.cs) - INotifyPeopertyChanged 인터페이스를 구현한다

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Text;
using System.Threading.Tasks;

namespace ViewModelTest
{
    //모델 클래스 : 데이터를 담고 있는 주체
    public class User : INotifyPropertyChanged
    {
        private string _firstName;
        public string FirstName
        {
            get
            {
                return _firstName;
            }
            set
            {
                _firstName = value;
                RaisePropertyChange();
            }
        }

        private string _lastName;
        public string LastName
        {
            get
            {
                return _lastName;
            }
            set
            {
                _lastName = value;
                RaisePropertyChange();
            }
        }

        public event PropertyChangedEventHandler PropertyChanged;

        public void RaisePropertyChange([CallerMemberName]string propertyname = null)
        {
            PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyname));
        }
    }
}

2. ViewModel 클래스(ViewModel.cs) - 모델 클래스를 상속받고, 초기값 할당

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ViewModelTest
{
    class ViewModel : User
    {
        public ViewModel()
        {
            FirstName = "KIL-DONG";
            LastName  = "KIM";
        }
    }
}

 

3. UI 구성

<Window x:Class="ViewModelTest.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:ViewModelTest"
        mc:Ignorable="d"
        Title="MainWindow" Height="205" Width="731">
    <Grid HorizontalAlignment="Center" Height="190" VerticalAlignment="Center" Width="731">
        <Grid.ColumnDefinitions>
            <ColumnDefinition/>
            <ColumnDefinition/>
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition/>
            <RowDefinition/>
            <RowDefinition/>
        </Grid.RowDefinitions>
        <Label x:Name="label" Content="First Name : " HorizontalAlignment="Center" VerticalAlignment="Center" Width="366" Height="63" HorizontalContentAlignment="Right" VerticalContentAlignment="Center" FontSize="18"/>
        <Label x:Name="label1" Content="Last Name : " HorizontalAlignment="Center" Grid.Row="1" VerticalAlignment="Center" Width="366" Height="64" HorizontalContentAlignment="Right" VerticalContentAlignment="Center" FontSize="18"/>
        <TextBox x:Name="textBox" Grid.Column="1" HorizontalAlignment="Center" TextWrapping="Wrap" VerticalAlignment="Center" TextAlignment="Center" Width="190" Height="17" Text="{Binding FirstName, Mode=TwoWay}"/>
        <TextBlock x:Name="textBlock" Grid.Column="1" HorizontalAlignment="Center" TextWrapping="Wrap" VerticalAlignment="Center" Height="22" Grid.Row="1" Width="190" Text="{Binding LastName}"/>
        <Button x:Name="button" Content="보기" Grid.Column="1" HorizontalAlignment="Left" Margin="136,31,0,0" Grid.Row="2" VerticalAlignment="Top" Click="button_Click"/>
        <Button x:Name="button1" Content="이름변경" Grid.Column="1" HorizontalAlignment="Left" Margin="242,31,0,0" Grid.Row="2" VerticalAlignment="Top" Click="button1_Click"/>
    </Grid>

</Window>

4. 구현 클래스

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace ViewModelTest
{
    /// <summary>
    /// Interaction logic for MainWindow.xaml
    /// </summary>
    public partial class MainWindow : Window
    {
        public MainWindow()
        {
            InitializeComponent();
            ViewModel v = new ViewModel();
            this.DataContext = v;
        }

        private void button_Click(object sender, RoutedEventArgs e)
        {
            ViewModel v = this.DataContext as ViewModel;
            MessageBox.Show(v.LastName + "," + v.FirstName);
        }

        //이름을 홍길동으로 변경
        private void button1_Click(object sender, RoutedEventArgs e)
        {
            ViewModel v = this.DataContext as ViewModel;
            v.LastName = "홍";
            v.FirstName = "길동";
        }
    }
}

강의 : https://youtu.be/KbNXBqTh_IM?list=PLxU-iZCqT52Cmj47aKB1T-SxI33YL7rYS

 

1. 체크박스를 클릭하면 TextBlock이 사라지게끔 함

<Window x:Class="DataTriggerExample.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:DataTriggerExample"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Window.Resources>
        <Style x:Key="MyStyle" TargetType="TextBlock">
            <Setter Property="Visibility" Value="Visible"/>
            <Style.Triggers>
                <!-- cb1이 check되면 -->
                <DataTrigger Binding="{Binding ElementName=cb1, Path=IsChecked}"
                             Value="True">
                    <!-- 이 TextBlock의 Visibility를 false로-->
                    <Setter Property="Visibility" Value="Hidden"/>

                </DataTrigger>
            </Style.Triggers>
        </Style>
    </Window.Resources>
    <StackPanel>
        <CheckBox x:Name="cb1" Content="Click Me" HorizontalAlignment="Left" Margin="282,124,0,0" VerticalAlignment="Top"/>
        <TextBlock x:Name="textBlock" Text="Hello WPF!!!" TextWrapping="Wrap" Width="314"
                   Style="{StaticResource MyStyle}"/>

    </StackPanel>
</Window>

* cb1(CheckBox 이름)이 클릭하면 사라지는 TextBlock Style

 

 

2. 스크롤바를 움직이면 ProgressBar와 Textbox의 값이 바뀌게 되고,

    스크롤바의 값이 20이 되면 ProgressBar의 전경색이 붉은색이 된다

1) Progressbar 변경

<Window x:Class="DataTriggerExample.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:DataTriggerExample"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Window.Resources>
        <!-- Progressbar는 이 Style을 적용한다-->
        <Style TargetType="{x:Type ProgressBar}">
            <Setter Property="Foreground" Value="Blue"/>
            <Style.Triggers>
                <!-- TheValue가 20이면 -->
                <DataTrigger Binding="{Binding TheValue}" Value="20">
                    <!-- 전경색을 Red로 바꿔라-->
                    <Setter Property="Foreground" Value="Red"/>

                </DataTrigger>
            </Style.Triggers>
        </Style>
    </Window.Resources>
    <Grid>
        <Grid.RowDefinitions>
            <RowDefinition/>
            <RowDefinition/>
            <RowDefinition/>
        </Grid.RowDefinitions>

        <Slider x:Name="MySlider" Margin="5" Minimum="10" Maximum="20"
                Value="{Binding TheValue}"/>
        <ProgressBar Grid.Row="1" Minimum="10" Maximum="20" Value="{Binding TheValue}" />
        <TextBox Grid.Row="2" Text="{Binding TheValue}" />
    </Grid>
</Window>
namespace DataTriggerExample
{
    public class DataObject
    {
        public int TheValue { get; set; }
    }


    public partial class MainWindow : Window
    {
        public MainWindow()
        {
            InitializeComponent();
            DataContext = new DataObject();
        }
    }
}

* Progressbar를 움직이면 TheValue가 DataObject.TheValue로 들어가게 되고,

그 값들이 Progressbar와 TextBox에 들어가게 된다

* TheValue가 20이 되면 전경색이 붉은색이 된다.

 

 

 

 

https://youtu.be/MGOb9QXi6So?list=PLxU-iZCqT52Cmj47aKB1T-SxI33YL7rYS

 

1) xaml만 수정해서 TextBlock 위에 마우스가 지나가면 글씨 속성 변경하기

<Window x:Class="WpfApp1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp1"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Grid>
        <TextBlock x:Name="tblk1" Text="Hello, WPF World!" FontSize="30"
                   HorizontalAlignment="Center" VerticalAlignment="Center">
            <TextBlock.Style>
                <Style TargetType="TextBlock">
                    <Setter Property="Foreground" Value="Green"></Setter>
                    <Style.Triggers>
                        <!-- 프로퍼티 트리거 -->
                        <Trigger Property="IsMouseOver" Value="true">
                            <Setter Property="Foreground" Value="Red"/>
                            <Setter Property="TextDecorations" Value="Underline" />
                        </Trigger>
                    </Style.Triggers>
                </Style>                
            </TextBlock.Style>
        </TextBlock>
    </Grid>
</Window>

MouseOver 이벤트

 

 

2) 스타일을 만들어서 두개의 컨트롤에 적용하기

<Window x:Class="WpfApp1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp1"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Window.Resources>
        <Style x:Key="MyStyle">
            <Setter Property="Control.Foreground" Value="Red" />
            <Setter Property="TextBlock.Text" Value="Hello WPF!!"/>
            <Style.Triggers>
                <Trigger Property="Control.IsMouseOver" Value="true">
                    <Setter Property="Control.Foreground" Value="Blue" />
                    <Setter Property="TextBlock.Text" Value="버튼으로 진입했습니다"/>
                </Trigger>
            </Style.Triggers>
        </Style>
    </Window.Resources>
    <StackPanel>
        <Button Width="100" Height="70"
                Style="{StaticResource MyStyle}"
                Content="Trigger"
                />
        <TextBlock Style="{StaticResource MyStyle}"
                   FontSize="30" HorizontalAlignment="Center"
                VerticalAlignment="Center"/>
    </StackPanel>
</Window>

평상시
버튼 진입시
TextBlock 진입시

 

 

+ Recent posts